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ABSTRACT
Objective  To identify nivolumab resistance-related genes in patients with head and neck squamous cell 
carcinoma (HNSCC) using single-cell and bulk RNA-sequencing data.
Methods  The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus 
database were analyzed to screen out differentially expressed genes (DEGs) between nivolumab resistant and 
nivolumab sensitive patients using R software. The Least Absolute Shrinkage Selection Operator (LASSO) 
regression and Recursive Feature Elimination (RFE) algorithm were performed to identify key genes associated 
with nivolumab resistance. Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes analyses. The relationships of key genes with immune cell infiltration, 
differentation trajectory, dynamic gene expression profiles, and ligand-receptor interaction were explored.
Results  We found 83 DEGs. They were mainly enriched in T-cell differentiation, PD-1 and PD-L1 checkpoint, 
and T-cell receptor pathways. Among six key genes identified using machine learning algorithms, only PPP1R14A 
gene was differentially expressed between the nivolumab resistant and nivolumab sensitive groups both before 
and after immunotherapy (P < 0.05). The high PPP1R14A gene expression group had lower immune score (P < 
0.01), higher expression of immunosuppressive factors (such as PDCD1, CTLA4, and PDCD1LG2) (r > 0, P < 
0.05), lower differentiation of infiltrated immune cells (P < 0.05), and a higher degree of interaction between 
HLA and CD4 (P < 0.05).
Conclusions  PPP1R14A gene is closely associated with resistance to nivolumab in HNSCC patients. Therefore, 
PPP1R14A may be a target to ameliorate nivolumab resistance of HNSCC patients.
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INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is 

the sixth most common cancer in the world, and its in-

cidence and mortality are increasing year by year[1]. 

The treatment modalities for HNSCC usually involve 

surgical resection, adjuvant radiotherapy, or a combi-

nation of radiotherapy and chemotherapy. The 5-year 

survival of HNSCC patients is less than 50% because 

about 60% of the patients are in advanced stages at 

diagnosis and the tumor are prone to lymph node 
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metastasis and local recurrence[2,3]. In addition, surgery 

may lead to pharyngeal dysfunction or a defective head 

and neck appearance, and radiotherapy may result in 

damage to other organs, therefore leading to a poor 

clinical prognosis[4]. Fortunately, immune checkpoint 

inhibitors targeting programmed cell death protein 1 

(PD-1) and programmed cell death protein ligand 1 

(PD-L1) offer a treatment intensification strategy for 

patients with advanced or metastatic HNSCC, with the 

advantage of avoiding the side effects of conventional 

therapies and generating a sustained anti-tumor im-

mune response[5]. They can effectively manipulate the 

immune system to specifically recognize and attack 

cancer cells. Nivolumab, an anti-PD-1 immune check-

point inhibitor, has been approved for recurrent or 

metastatic HNSCC treatment. Although nivolumab im-

proved overall and progression-free survivals, drug re-

sistance compromises its efficacy[6,7]. There is a need 

to explore the resistance mechanisms to nivolumab. 

Therefore, we analyzed single-cell and bulk RNA-

sequencing data using bioinformatics to identify pos-

sible genes that may be involved in nivolumab resis-

tance to improve response rate and survival of HNSCC.

MATERIALS AND METHODS

Data acquisition

Sequencing data of HNSCC patients treated with niv-

olumab were downloaded from the Gene Expression Om-

nibus (GEO) database (https://www. ncbi. nlm. nih. gov/

geo/). GSE195832 dataset contained RNA-sequencing 

data of tumor tissues from 96 HNSCC patients treated 

with nivolumab, of which 42 patients were sensitive to 

nivolumab and 54 resistant to nivolumab. GSE232240 

dataset contained single-cell RNA-sequencing data of 

immune-infiltrating cells from tumor tissues in 18 HNSCC 

patients treated with nivolumab, of which 11 patients 

were sensitive and 7 resistant to nivolumab. The single-

cell data were processed according to the following crite-

ria: (1) retention of cells expressing between 1,000 and 

100,000 genes; (2) retention of cells with less than 20% 

mitochondrial genes; and (3) retention of genes ex-

pressed between 500 and 10,000.

Differential expression analysis of nivolumab 

resistance-related genes

For bulk data, differentially expressed genes (DEGs) be-

tween the nivolumab resistant and nivolumab sensitive 

patients were identified by "limma" package of R soft-

ware[8] with the criteria of false discovery rate (FDR) < 

0.05 and log fold change (logFC) > 0. For single-cell data, 

resistance-associated DEGs (FDR < 0.05 and logFC > 0) 

were screened by "FindMarkers" function of "seurat" pack-

age[9]. Genes with an average logFC > 0.585 for both 

bulk and single-cell RNA-sequencing datasets were finally 

considered as nivolumab resistance-associated DEGs. 

Then, resistance scores of these DEGs were calculated by 

"UCell" package and used to explore the differential ex-

pression of DEGs in different cell types[10].

Functional enrichment analysis

Gene ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) enrichment analyses were per-

formed to analyze the function of resistance-associated 

DEGs using the "clusterProfiler" package[11]. Gene set 

enrichment analysis (GSEA) was performed to identify 

biological function of DEGs[12]. Gene set variation analy-

sis (GSVA) was used to estimate the enrichment scores 

of KEGG metabolism-related pathways of DEGs in pa-

tients resistant to nivolumab treatment[13].

Identification of DEGs associated with nivolumab 

resistance

The Least Absolute Shrinkage and Selection Operator 

(LASSO) regression and Recursive Feature Elimination 

(RFE) algorithm analyses[14,15] were utilized to screen 

the key genes related to nivolumab resistance. Next, 

an overlap of DEGs between the two datasets was 

identified using a Venn diagram web tool (http://bioin-

formatics.psb.ugent.be/webtools/Venn/).

Evaluation of immune response

The CIBERSORT algorithm was used to calculate the 

level of immune cell infiltration in bulk RNA-

sequencing data[16]. The ESTIMATE algorithm was 

used to estimate the immune score and tumor purity 

of each sample of bulk RNA-sequencing data[17].

The correlation between the expression of 

PPP1R14A gene and different immunomodulatory fac-

tors was analyzed and logFC values and odds ratio 

(OR) values were obtained.

Pseudotime and cellular communication analysis

The stemness score of each cell was calculated using 

the "CytoTRACE" software package[18], and the Cyto-

TRACE results were used to assist the "Monocle3" al-

gorithm[19] to infer the proposed temporal differentia-

tion trajectory of cells.
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The tumor microenvironment is involved in com-

plex intercellular communication. Exploring receptor-

ligand interactions has a key role to reveal the tumori-

genesis and development of drug resistance[20]. There-

fore, the intensity of receptor-ligand interactions in dif-

ferent PPP1R14A expression groups was calculated by 

using "CellChat" software package[21] to evaluate the 

potential relationship between PPP1R14A expression 

and nivolumab resistance.

Drug sensitivity analysis

To predict potential treatment sensitive drugs for 

nivolumab-resistant patients, we performed drug sensitiv-

ity analysis using data from the Genomics of Drug Sensi-

tivity in Cancer (GDSC) database (https://www.cancerrx-

gene. org/). The half maximal inhibitory concentration 

(IC50) of 565 drugs was assessed using the "oncoPre-

dict" package[22] (for bulk sequencing data) and using the 

"beyondcell" package[23] (for single-cell sequencing data).

Expression validation of key gene

GSE212551 dataset (including 76 resistant patients 

and 24 sensitive patients) and GSE226134 dataset (in-

cluding 40 resistant patients and 9 sensitive patients) 

were used as external validation datasets to validate 

the expression of PPP1R14A gene between nivolumab 

sensitive and resistant patients.

In addition, we validated PPP1R14A expression 

between nivolumab sensitive and resistant HNSCC 

patients (n = 522) in The Cancer Genomic Atlas 

(TCGA, https://portal. gdc. cancer. gov/) using the Tu-

mor Immune Dysfunction and Exclusion (TIDE) algo-

rithm[24].

Statistical analysis

All statistical analyses were performed by using R 

(version 4.3.1, https://www. r-project. org/). Data were 

described as mean ± standard deviation (SD) or 

median and interquartile range (IQR). The differences 

between variables of different groups were tested us-

ing Wilcoxon test. Correlation analysis was performed 

using Spearman correlation test. P < 0.05 was consid-

ered statistically significant.

RESULTS

DEGs associated with nivolumab resistance

We found 83 genes highly expressed in the nivolumab-

resistant group by analyzing bulk and single-cell RNA-

sequencing data (logFC > 0.585, FDR < 0.05, Fig. 1A). 

GO analysis showed that the biological process of 

these DEGs was mainly enriched in pathways such as 

regulation of T cell differentiation, Th2 cell differentia-

tion, and RNA modification. The main cellular compo-

nents were inner mitochondrial membrane, mitochon-

drial matrix, and mitochondrial ribosomes. Molecular 

function focused on tumor necrosis factor binding, 

membrane insertion enzyme activity, and glucokinase 

activity. KEGG analysis showed that these DEGs were 

mainly enriched in PD-1 and PD-L1 checkpoint path-

way, T-cell receptor signaling pathway, and tumor ne-

crosis factor (TNF) signaling pathway (Fig. 1B). More-

over, pathways mediating T cell receptor activity were 

inhibited, whereas pathways regulating NK cell-

mediated cytotoxicity were activated (Fig. 1C). Resis-

tance scores for DEGs were highest in plasmacytoid 

dendritic cells (pDC) and lowest in conventional den-

dritic cells (cDC) (Fig. 1D-1F).

Key genes for nivolumab resistance

LASSO regression screened out 10 key genes for drug 

resistance (Fig. 2A). For its minimum prediction error, 

random forest model of RFE algorithm was chosen for 

analysis, and screened out 35 key genes (Fig. 2B). 

Subsequently, through overlapping DEGs of bulk and 

single-cell RNA-sequencing datasets, 6 key genes 

were identified, including FKBP prolyl isomerase 1B 

(FKBP1B), MHC class I polypeptide-related sequence 

A (MICA), peptidyl arginine deiminase 4 (PADI4), pro-

tein phosphatase 1 regulatory inhibitor subunit 14A 

(PPP1R14A), SNRPN upstream open reading frame 

(SNURF), and TraB domain 2A (TRABD2A) (Fig. 2C).

Furthermore, we found that regardless of before 

and after nivolumab treatment, only PPP1R14A among 

the six key genes had statistically significant expres-

sion levels between the resistant group and the sensi-

tive group, with a decrease in expression after treat-

ment in the sensitive group and an increase in expres-

sion after treatment in the resistant group (all P < 

0.05, Fig. 2D, 2E). Thus, the PPP1R14A gene may be 

a key gene contributing to resistance to nivolumab in 

HNSCC patients, which deserves further investigation.

PPP1R14A gene expression is related to low im-

mune response

The patients were categorized into high and low ex-

pression groups according to the median of PPP1R14A 

gene expression. The ESTIAMTE algorithm analysis re-
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Figure 1. Identification of nivolumab resistance-associated differentially expressed genes (DEGs) between nivolumab resis-
tant and sensitive patients in the Gene Expression Omnibus (GEO) database. (A) Volcano plot of DEGs between nivolumab resis-
tant and sensitive patients in single-cell and bulk RNA-sequencing data. (B) Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analyses of function annotation of DEGs. (C) Gene set enrichment analysis (GSEA) of biological function of 
DEGs. (D) The Uniform Manifold Approximation and Projection (UMAP) method shows the distribution of five immune-infiltrating cells in tu-
mor tissues. (E, F) Scatter plot (E) and violin plot (F) of resistance-related scores for five immune-infiltrating cells in tumor tissues (n = 
26,324).
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Figure 2. Identification of key genes for drug resistance. (A, B) Screening of key genes for drug resistance using the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression analysis (A) and Recursive Feature Elimination (RFE) algorithm analysis (B). (C) 
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vealed that tumor purity was significantly higher in 

the PPP1R14A high expression group, and immune 

score was significantly lower (P < 0.05, Fig. 3A). And 

the expression of PPP1R14A gene was positively corre-

lated with the infiltration level of memory B cells (r > 

0, P < 0.001) and M2 macrophages (r > 0, P < 

0.001), while negatively correlated with the infiltration 

of naive B cells (r < 0, P < 0.001) and resting CD4 

memory T cells (r < 0, P < 0.001) (Fig. 3B). Besides, 

the PPP1R14A gene expression was positively corre-

lated with the expression of immunosuppressive fac-

tors such as PDCD1, CTLA4, and PDCD1LG2 (r > 0, 

logFC > 0, OR > 1, P < 0.05; Fig. 3C).

These results suggested that PPP1R14A gene 

may promote drug resistance by suppressing the 

body's immune response to the tumor. Therefore, we 

further explored the relationship between PPP1R14A 

expression and immune infiltration microenvironment 

of HNSCC tissues using single-cell data. As shown in 

Fig. 3D, the PPP1R14A gene was predominantly ex-

pressed in T cells, followed by B cells, with the lowest 

expression in cDC (P < 0.001). Further analysis 

showed that PPP1R14A expression in the T cells from 

nivolumab resistant patients was significantly higher 

than that from nivolumab sensitive patients, which in-

dicated that PPP1R14A gene induced immunotherapy 

resistance is mainly regulated by activating its expres-

sion in T cells (Fig. 3E). Furthermore, PPP1R14A gene 

expression in T cell subtypes was explored, and Uni-

form Manifold Approximation and Projection (UMAP) 

clustering indentified three T cell subtypes, including 

CD8+ T cells, CD4+ T cells, and regulatory T cells 

(Tregs) (Fig. 3F). The ratio of Tregs was lower in the 

nivolumab resistance group compared with the niv-

A B C

1

3

**

0

500

1000

Low High

Im
m

un
e 

Sc
or

e

*

0

0.25

0.50

0.75

Low High

Tu
m

or
 P

ur
ity

ADORA2A

BTLA

CD160

CD244

CD274

CD96
CSF1R
CTLA4
HAVCR2
IDO1
IL10
IL10RB
KDR
LAG3
LGALS9
PDCD1
PDCD1LG2TGFB1TGFBR1TIGITVTCN1B2M

TAP1

TAP2

TAPBP

82L
C

CC
C

L4
C

C
L5

C
C

L7
C

C
L8

C
X3

C
L1

C
XC

L1

CX
CL

10

CX
CL

11

CX
CL

12

CX
CL

13

CX
CL

14

CX
CL

16

CX
CL

17

CX
CL

2

CXC
L3

CXC
L5

CXCL6

CXCL9XCL1XCL2

CCL11

CCL13

CCL15

CCL16

CCL17

CCL19

CCL2
C

C
L20

C
C

L21
C

C
L22

C
C

L23
C

C
L24

C
C

L2672
L

C
C

CCR1
CCR10CCR2CCR3CCR4CCR5CCR6CCR7CCR8CX3CR1CXCR1CXCR2CXCR3CXCR4

CXCR5
CXCR6

XCR1
CD27

CD276
CD28
CD40

CD40LG
CD48
CD70
CD80
CD86

HHLA2

ICOS

ICOSLG

IL2RA
IL6

IL6R

KLRC1

KLRK1

MICB

PVR
TMIGD2

TNFRSF13B

TNFRSF13C
TNFRSF17

TNFRSF18
TNFRSF25
TNFRSF4

TNFRSF8
TNFRSF9
TNFSF13

TN
FSF13B

TN
FSF14

TN
FSF15

TN
FSF18

TN
FSF4

TN
FSF9 1P
BL

U

Gene Type

Immunoinhibitor

MHC

chemokine

receptor

Immunostimulator

Correlation

0 1
logOR (High vs Low)

0 1 2
logFC (High vs Low)

0 1 2

*** *** *

0

0.5

1.0

1.5

2.0

CD8T
CD4T

Tre
gs

PP
P1

R
14

A 
Ex

pr
es

si
on

Type Sensitive Resistance

1
111

F G H

*** **** *

0

0

0.5

1.0

1.5

2.0

T ce
lls

B ce
lls

pD
C

Mac
rop

ha
ge

s
cD

C

PP
P1

R
14

A 
Ex

pr
es

si
on

Type Sensitive Resistance

P value

Kruskal−Wallis, P = 7.2e−07
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olumab sensitive group, while the ratios of CD4+ T 

cells and CD8+ T cells were higher (P < 0.001, Fig. 

3G). Further, compared with the nivolumab-sensitive 

group, PPP1R14A expression level was higher in the 

anti-tumor immune cells such as CD8+ T cells and 

CD4+ T cells of the nivolumab-resistant group, while 

the expression level was lower in the pro-tumor im-

mune cells like Tregs cells (P < 0.05, Fig. 3H).

Functional enrichment of PPP1R14A

GSVA showed that signaling pathways such as 

amino acid metabolism, glucose metabolism, biosyn-

thesis and metabolism of glycan, and lipid metabo-

lism had significant difference between the high and 

low PPP1R14A expression groups (Fig. 4A). More-
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over, quantitative analysis showed that the highly 

expressed PPP1R14A was mainly enriched in tricar-

boxylic acid cycle and glycolytic pathway. While, the 

lowerly expressed PPP1R14A was mainly enriched in 

pathways of alanine, aspartate and glutamate 

metabolism, leucine and isoleucine degradation, 

fatty acid degradation, steroid biosynthesis, purine 

and pyrimidine metabolism, and drug metabolism 

(Fig. 4B).

Pseudotime and cellular communication of im-

mune cells

CytoTRACE and Monocle3 identified pseudotime 

scores for four cell clusters, including dendritic cells, 

macrophages, T cells, and B cells, infiltrated in the tu-

mor tissues. Dendritic cells and macrophages were 

identified as a low differentiated state (Fig. 5A, 5B). 

Immune cells in the high PPP1R14A gene expression 

group had lower differentiation (Fig. 5C, 5D).

CellChat analysis showed that the intensity of 

ligand-receptor interaction between the HLA family 

and CD4 in the high PPP1R4A group was higher than 

that of other ligand-receptor pairs in the low 

PPP1R14A expression groups (Fig. 5E). Furthermore, 

the signaling pathways regulating HLA-CD4 interac-

tions, MHC-Ⅰ, and MHC-Ⅱ were activated in the high 

PPP1R14A expression group (Fig. 5F).

Potentially sensitive drug

As shown in Fig. 6, among 565 drugs screened in the 

bulk sequencing data, the IC50 value of AXITINIB 

showed the greatest negative correlation with the ex-

pression of PPP1R14A (Fig. 6A). Screening of the 

single-cell sequencing data also confirmed that the 

IC50 value of AXITINIB in the PPP1R14A high-

expression group was smaller than that in the low-

expression group (Fig. 6B, 6C). Furthermore, at the 

cellular level, T cells had the lowest sensitivity to 

AXITINIB, but pDC had the highest sensitivity 

(Fig. 6D).

Validation of PPP1R14A expression in TCGA data-

set cohorts

Patients in the TCGA cohort were divided into niv-

olumab sensitive (n = 209) and resistant groups (n = 
m
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313) (Fig. 7A). PPP1R14A gene expression was posi-

tively correlated with tumor immune dysfunction and 

exclusion (TIDE) scores (r > 0, P < 0.05, Fig. 7B), 

and PPP1R14A gene was significantly highly expressed 

in the nivolumab resistant group compared with the 

sensitive group (P < 0.05, Fig. 7C). Similarly, there 

was a significant difference in HNSCC patients' immu-

notherapy response between the two PPP1R14A gene 

expression groups, with lower benefit in the high ex-

pression group (P < 0.05, Fig. 7D). This further dem-

onstrates that PPP1R14A gene is expected to be a tar-

get for predicting immunotherapy resistance in 

HNSCC patients. Moreover, we validated this findings 

in the GSE212551 and GSE226134 cohorts of HNSCC 

patients, and the results supported our findings as 

well (Fig. 7C, 7D).

DISCUSSION

The rich blood supply and dense lymphatic tissues in 

the head and neck lead to HNSCC susceptible to inva-

sion and metastasis, and the therapeutic effect is un-

satisfactory[25]. Currently, cisplatin is the adjuvant 

therapeutic choice for patients with advanced localized 

HNSCC. However, due to the prolonged platinum expo-

sure, patients are prone to drug resistance[26]. Immu-

notherapy, an emerging oncology therapy with unprec-

edented efficacy against a wide range of tumors, has 

been approved for the treatment of HNSCC recurrence 

or metastasis during or after platinum-based 

therapy[27-29]. Although immunotherapy has dramati-

cally improved the prognosis of patients with ad-

vanced HNSCC, only 20%–30% of treated patients ben-

efit in the long term, which may be attributed to drug 

resistance due to dysfunction or down-regulation of 

antigen presentation, depletion of expressed tumor 

neoantigens, and tumor-mediated immune rejec-

tion[30,31]. Hence, exploring how resistance to immuno-

therapy in HNSCC arises and develops and what its 

molecular targets are is necessary to improve progno-

sis of HNSCC patients. In this study, we revealed a 

significant relationship between PPP1R14A gene and 

resistance to nivolumab in HNSCC patients through 

analyzing bulk and single-cell sequencing data.

We identifed that after nivolumab treatment the 

expression of PPP1R14A gene was increased in the 

immunotherapy-resistant patients and decreased in 

the sensitive patients. This suggests that PPP1R14A 

may associated with drug resistance in HNSCC pa-

tients. PPP1R14A may be a promoter of the infiltration 

of pro-tumor immune microenvironment cells, such as 

M2 macrophages, resting mast cells, and memory B 

cells. The infiltration of these immune cells has been 

shown to be involved in the progression of 

HNSCC[32-34]. Moreover, PPP1R14A gene may also be 

activated by immunosuppressive factors such as 

PDCD1, CTLA4 and PDCD1LG2, which are participated 

in HNSCC progression .

The human PPP1R14A gene is localized at 

19q13.1 and encodes a protein containing 147 amino 

acids[35]. The Human Protein Atlas (HPA) database 

shows that PPP1R14A protein is mainly localized in the 

nucleoplasm and to a less extent in nucleosomes[36]. It 

belongs to the protein phosphatase 1 inhibitor family 

and acts as an important regulator of protein phospho-

ratory. It regulates a variety of cellular processes, 

such as actin contraction, glycogen metabolism, cell 

cycle, protein synthesis, and neuronal signal transduc-

tion[37]. Previous studies have found that PPP1R14A is 

associated with the development of various diseases, 
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including prostate cancer, cervical cancer, and Al-

zheimer's disease[38-40].

It has been proved that cellular metabolic pro-

cesses are involved in tumor immunotherapy resis-

tance[41]. To clarify whether metabolism-related path-

ways is participated in immunotherapeutic resistance 

in HNSCC patients, we analyzed single-cell and bulk 

RNA-sequencing data using bioinformatic analysis, 

and verified that a significant relationship between 

high PPP1R14A expression and activation of tricarbox-

ylic acid cycle and glycolysis. The study by Liu et al.[42] 

also confirmed that inhibiting tricarboxylic acid cycle 

can enhance the efficacy of anti-PD1 therapy in mela-

noma patients. Furthermore, we found higher 

PPP1R14A expression mediated immunotherapy resis-

tance in HNSCC patients by inhibiting amino acid me-
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tabolism. In tumor immune microenvironment, amino 

acid metabolism has been proved to regulate the pro-

liferation and anti-tumor activity of T cells, NK cells, 

and B cells[43]. Therefore, PPP1R14A may promote niv-

olumab resistance by regulating metabolism pathways 

in tumor tissues, such as the tricarboxylic acid cycle, 

glycolysis, and amino acid metabolism.

In addition, high PPP1R14A gene expression was 

closely associated with cell stemness and increased 

with the progression of cell differentiation. The role of 

high cell stemness in HNSCC heterogeneity, metasta-

sis, and cisplatin resistance has been demonstrated 

and may have a potential impact on immunotherapy 

resistance[44]. Our research identified AXITINIB as one 

of the potential therapeutic agents for patients resis-

tant to nivolumab. AXITINIB is a multi-tyrosine kinase 

inhibitor whose targets include VEGFR-1, -2, and -3. 

In addition, it has inhibitory activity against the down-

stream effectors of PDGFR and EGFR, both of which 

usually contribute to head and neck tumorigenesis[45]. 

In cisplatin-resistant patients with advanced recurrent 

or metastatic HNSCC, the 6-month overall survival 

rate was found to be 70% in patients treated with 

AXITINIB, which was higher than that of the control 

group (50%), and the combination of AXITINIB with 

an anti-PD-1 drug further improved the overall sur-

vival rate of HNSCC patients[46].

In conclusion, we screened out the genes associ-

ated with resistance to nivolumab in HNSCC patients 

by single-cell and bulk RNA-sequencing data and ex-

plored how these genes contribute to immunothera-

peutic resistance. However, our study had limitations. 

First, although we performed bioinformatic analysis of 

two types of sequencing data, a much larger sample 

is still needed to confirm this findings. Second, the 

single-cell dataset we analyzed only contained im-

mune cells but did not contain tumor cells. Finally, the 

study lacked experimental validation of the bioinfor-

matic results.
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