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Abstract
Objective To construct a risk prediction model for assisted diagnosis of Diabetic Nephropathy (DN) using machine learning
algorithms, and to validate it internally and externally.
Methods Firstly, the data was cleaned and enhanced, and was divided into training and test sets according to the 7:3 ratio.
Then, the metrics related to DN were filtered by difference analysis, Least Absolute Shrinkage and Selection Operator
(LASSO), Recursive Feature Elimination (RFE), and Max-relevance and Min-redundancy (MRMR) algorithms. Ten
machine learning models were constructed based on the key variables. The best model was filtered by Receiver Operating
Characteristic (ROC), Precision-Recall (PR), Accuracy, Matthews Correlation Coefficient (MCC), and Kappa, and was
internally and externally validated. Based on the best model, an online platform had been constructed.
Results 15 key variables were selected, and among the 10 machine learning models, the Random Forest model achieved the
best predictive performance. In the test set, the area under the ROC curve was 0.912, and in two external validation cohorts,
the area under the ROC curve was 0.828 and 0.863, indicating excellent predictive and generalization abilities.
Conclusion The model has a good predictive value and is expected to help in the early diagnosis and screening of clinical
DN.
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Introduction

Diabetic Nephropathy (DN) refers to a significant compli-
cation characterized by structural and functional changes in
the kidneys induced by diabetes. DN has emerged as the
primary driving factor behind renal failure, with approxi-
mately 40% of cases of renal failure attributed to DN [1]. As
of 2017, the global prevalence of DN was estimated to be
approximately 9.1%, with around 1.2 million patients

succumbing to DN-related complications [2]. Research
demonstrated that targeted interventions during the early
stages of DN effectively prevented or slowed the progres-
sion of renal failure and improved patient outcomes [3].
However, the occurrence and development of DN are
influenced by a variety of complex pathophysiological
mechanisms, including metabolic disturbances, genetic
factors, inflammation, and oxidative stress, which leads to
challenges in clinical diagnosis and treatment [4, 5]. Cur-
rently, the clinical diagnosis of DN primarily relies on
serum creatinine levels and urinary albumin values. How-
ever, the accuracy of these measurements may be compro-
mised due to biological limitations and analytical variability
[6]. Therefore, there is an urgent need to develop and
validate novel diagnostic approaches for DN to achieve
early detection, diagnosis, and treatment, which holds sig-
nificant clinical relevance.

Machine Learning (ML), a multidisciplinary cross-tech-
nology, processes real-world data using various computer
algorithms by simulating human learning behavior [7]. In
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traditional healthcare practices, factors such as inadequate
disease prevention and the inherent bias in a physician’s
experience can often lead to misdiagnosis, subsequently
resulting in treatment failures or exacerbation of the medical
condition [8]. With its high accuracy and big data proces-
sing capability, machine learning is conducive to alleviating
the shortage of healthcare resources and the burden on
personnel. Presently, the application of machine learning
algorithmic models in the medical field is gradually
increasing, including the early prevention and diagnosis of
diseases [9], drug development [10], and infectious disease
prevention and treatment [11], which show good prediction
ability.

Currently, there are various studies applying machine
learning models to the diagnosis of DN. Such as Yin et al.
[12] used the XGboost model to predict the occurrence of
DN based on serum metabolite levels. XU et al. [13]
screened three DN-associated immune and oxidative stress
genes based on bioinformatics and machine learning
methods, which are expected to be pivotal genes for DN
treatment. LIU et al. [14] comprehensively compared 15
machine learning models and finally incorporated the Cat-
boost model for risk prediction of DN. Furthermore, Hos-
seini et al. [15] developed and validated a risk prediction
model for type 2 diabetic nephropathy through a logistic
regression model and developed an online tool to predict the
risk score of diabetic nephropathy. Other scholars recog-
nized fundus photographs of diabetic retinopathy by deep
learning methods, which were used to predict diabetic end-
stage renal disease, and the model performed well [16].
Based on their studies, it is significant to apply machine
learning and deep learning models to the clinical diagnosis
and screening of diabetic nephropathy. However, no com-
parative study comparing machine learning models with
deep learning models in DN prediction has been observed.
So, we synthesized machine learning and deep learning
models for DN risk prediction, incorporated a wider variety
of models to better explore the models suitable for our
study, and validated the models as well as analyzed them
for interpretability. In addition, we developed an online
prediction platform based on the best models to be used by
other researchers.

Materials and methods

Data source

Training data

The data is obtained from the National Population Health
Data Center (NPHDC) of China (https://www.ncmi.cn).
This dataset comprises 87 clinical variables for 3000

patients with type 2 diabetes, including general demo-
graphic information, physical examination data, laboratory
data, and diabetes-related complications data. Within this
dataset, there are 1277 samples of DN (Diabetic Nephro-
pathy) and 1723 samples of non-DN (nDN).

External validation data

Data from the National Health and Nutrition Examination
Survey (NHANES) of the United States (https://www.cdc.
gov/nchs/nhanes) were included by the following criteria: (1)
Downloading demographic data, physical examination data,
laboratory data, and questionnaire data from 2015 to 2020;
(2) Retaining only samples with a diagnosis of diabetes. In
total, data from 1981 diabetic patients were obtained.

The Taiwan Biobank (TWBB) is a large-scale long-
itudinal study based on medical centers and several local
chronic disease patient cohorts. It comprises extensive
genomic and clinical examination data [17]. Clinical data
from 3183 patients with type 2 diabetes were obtained
through a database application for external validation.

Data cleaning

The data used in the study were obtained from the clinical
data of real diabetic patients with some missing values and
outliers. Therefore, to ensure the reliability and standardi-
zation of the results, the following processing of the raw
data is required: (1) Outliers: outliers were identified by the
Interquartile Range (IQR) method. The upper bound of the
distribution of the data is set as Q3+ 1.5*(Q3–Q1) and the
lower bound as Q1–1.5*(Q3–Q1). For identified outliers in
the data, we replace them with boundary values; (2) Missing
values: variables and samples with more than 50% missing
values are deleted, and the rest of the missing values are
filled in by multiple regression interpolation with the “mice”
package [18].

Data enhancement

When data is imbalanced, the model performs better on
types with higher distribution than on those with lower
distribution. Therefore, it is necessary to deal with the
unbalanced data. The ratio of the nDN group to the DN
group in NPHDC data is 1.35: 1, which belongs to
unbalanced data. We used the Synthetic Minority Over-
sampling Technique for Nominal and Continuous features
(SMOTE-NC) algorithm, designed for oversampling
minority class samples, by randomly selecting a minority
class sample as a starting point, choosing a neighboring
sample as a reference point, and generating new synthetic
samples between them to boost the minority class sample
count (“themis” package) [19].
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Data splitting and normalization

The NPHDC data were randomly divided into the training
set and test set by stratified sampling in the ratio of 7:3. The
training set has a total of 2412 samples. The test set has a
total of 1034 samples.

Since there were significant differences in the scales of
the data in this dataset, making comparisons between dif-
ferent variables challenging, the min-max standardization
method was applied to standardize the indicators in the
training set. The maximum and minimum values of the
training set were then used to standardize the test set and
external validation data, ensuring uniform data standards.

Balance test

Statistical testing methods were used to perform differential
testing on the distribution of individual indicators in the
training and test sets. For continuous variables, t-tests and
Wilcoxon tests were applied based on whether the data met
the assumptions of normality and homoscedasticity. The
fold change (FC) was calculated to quantify differences
between groups. For categorical variables, the chi-squared
test or Fisher’s exact test was conducted to compare inter-
group differences, taking into account the total sample size
and expected values. The odds ratio (OR) was used to
assess the relative distribution of different groups.

To assess the overall balance of sample distribution, an
analysis was conducted using Uniform Manifold Approx-
imation and Projection (UMAP, “umap” package) and
Permutation Multivariate Analysis of Variance (PERMA-
NOVA, “vegan” package). The UMAP algorithm, a non-
supervised dimensionality reduction technique based on
manifold learning, maps high-dimensional data to a lower-
dimensional space. Unlike linear methods such as Principal
Component Analysis (PCA), UMAP preserves both the
overall and local structures of the data [20]. PMANOVA is
a non-parametric multivariate analysis of variance method
based on F-statistics. It decomposes the total variance using
distance matrices to test differences among multiple vari-
ables [21].

Feature selection

Before constructing the model, feature selection for key
variables is beneficial for reducing model complexity and
enhancing predictive capability. In this study, we utilized
four methods for feature selection: differential analysis, the
Least Absolute Shrinkage and Selection Operator (LASSO,
“glmnet” package), Recursive Feature Elimination (RFE,
“caret” package), and the Max-Relevance and Min-
Redundancy (MRMR, “mRMRe” package) algorithms.
We used either T-tests or Wilcoxon tests for continuous

variables and chi-squared tests or Fisher’s exact tests for
categorical variables, as previously described. FC or OR
was used to characterize inter-group differences. LASSO
regression is a regularization method based on linear
regression. It utilizes L1 regularization as a penalty term,
continually compressing the coefficients of variables,
resulting in some coefficients becoming zero, thus achiev-
ing feature selection [22]. The RFE algorithm is a model-
based feature selection method. It begins by training with all
features, then recursively trains the model by adding or
removing specific variables, eliminating the least important
features to achieve feature selection [23]. MRMR is a fea-
ture selection method based on mutual information. It
ensures maximal correlation of each variable with the
occurrence of DN while minimizing redundancy among
variables, effectively preventing significant collinearity
between features [24].

Construction and evaluation of machine learning
and deep learning models

Using the key features selected as described, 8 machine
learning models and 2 deep learning models were
constructed.

Random Forest (RF) is an ensemble learning method. It
makes predictions by constructing multiple decision trees,
each trained on randomly selected subsets of data and fea-
tures. The final output is determined by aggregating the
predictions of all trees through voting (“randomForest”
package) [25].

Logistic Regression (LR) is a linear model widely
employed for classification problems. It assumes that the
data follows a logistic distribution and utilizes maximum
likelihood estimation to fit model parameters. Predictions
are made by mapping the output of the linear function to
probabilities within the [0, 1] range (“rms” package).

Naive Bayes (NB) is a class of probabilistic classifiers
based on Bayes’ theorem. It assumes that features are
independent of each other and predicts classification by
computing the conditional probability of features given each
class (“e1071” package).

eXtreme Gradient Boosting (XGboost) is a gradient
boosting algorithm. It iteratively trains multiple decision
tree models, with each tree correcting the errors of the
previous ones and optimizing the loss function to enhance
model performance (“xgboost” package) [26].

Adaptive Boosting (Adaboost) is an iterative boosting
algorithm. It sequentially trains a series of weak classifiers,
adjusting the weights of previously misclassified samples in
each iteration to improve model performance (“adabag”
package) [27].

Category Boosting (Catboost) is a gradient boosting
algorithm that can automatically handle categorical features.
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It utilizes a histogram-based optimization method, elim-
inating the need for preprocessing such as one-hot encod-
ing. Catboost can effectively handle large-scale datasets
during training and boasts high accuracy and generalization
capabilities (“catboost” package) [28].

Logit Boosting (Logitboost) is a boosting algorithm that
employs optimizing logistic regression models to enhance
performance. It minimizes the log loss function, progres-
sively adds new models, and adjusts sample weights to
improve model performance (“caTools” package).

Light Gradient Boosting Machine (LightGBM) is a tree-
based gradient boosting framework that features efficiency
and distributed training capabilities. It utilizes a histogram-
based decision tree algorithm, enabling rapid tree model
construction during training and efficient handling of large-
scale datasets (“lightgbm” package) [29].

Feedforward Neural Network (FNN) is a classic neural
network structure comprising input, hidden, and output
layers. Information flows from the input layer through the
hidden layers, ultimately outputting to the output layer. By
training and adjusting weights, FNN learns the relationships
between inputs and outputs (“keras”, “tensorflow” packa-
ges) [30].

Back Propagation Neural Network (BPNN) is a classic
neural network model that utilizes the backpropagation
algorithm to adjust weights within the network, aiming to
minimize the error between predicted outputs and actual
outputs. It consists of input, hidden, and output layers, with
information propagating from the input layer through the
hidden layers to the output layer (“keras”, “tensorflow”
packages) [30].

All models were trained with default parameters and
evaluated using 5-fold cross-validation to ensure the relia-
bility of the results.. Subsequently, model reliability and
accuracy were compared using Receiver Operating Char-
acteristic (ROC) curves, Precision-Recall (PR) curves,
Accuracy, Matthews Correlation Coefficient (MCC), and
Kappa values. The best predictive model was selected based
on these metrics, and it was tested on the test set.

Then, to ensure the selected RF model achieved optimal
performance, we conducted hyperparameter tuning. We
varied the number of features considered for each tree split
(mtry) and the minimum size of each leaf node (nodesize)
from 1 to 15. Additionally, we varied the number of trees
from 100 to 1000 (ntrees, in increments of 25), resulting in a
total of 8325 model configurations. The model with the
highest ROC-AUC value was chosen as the final model for
subsequent analysis.

Model interpretability

Machine learning models are often considered black-box
models because the mapping process from inputs to outputs

is not readily observable, making it challenging to under-
stand their internal workings. To enhance model interpret-
ability and gain insight into how input features influence
model outputs, SHAP values and Partial Dependence Plots
(PDP) were employed for interpretability analysis.

Statistical analysis

The study involved analysis using R (version 4.3.1) and
Python (version 3.9.3). For continuous variables, group
differences were compared using t test or Wilcoxon test. For
categorical variables, group differences were assessed using
chi-squared test or Fisher’s exact test. Correlation analysis
was conducted using the Spearman correlation test. Statis-
tical differences were defined as P < 0.05.

Results

Training and test groups are well balanced

The difference analysis of each variable between the train-
ing group and the test group showed that only three vari-
ables had significant differences between the two groups,
indicating reasonably good balance between the variables
(P < 0.05, Fig. 1A). The UMAP and PERMANOVA ana-
lyses showed a more balanced distribution of the samples
between the two groups (P > 0.05, Fig. 1B). Therefore, the
training and testing groups were well balanced and could be
used for subsequent studies.

Feature selection

The differential analysis reveals that a total of 50 variables
exhibit significant differences in distribution between the
DN and nDN groups, including 31 continuous variables and
19 categorical variables (P < 0.05, Fig. 2A, Tables S1 and
S2). The RFE results indicate that the RF model has the
lowest error among the five models. Therefore, the RF-RFE
method was selected, resulting in the selection of 45 key
variables (Fig. 2B). In LASSO regression analysis, 47 key
variables were selected when the λ value was minimized
(Fig. 2C, D). The MRMR algorithm identified a total of 66
relevant variables. As shown in Fig. 2E, these four methods
collectively identified 15 clinical indicators associated with
DN, including Age, Body Mass Index (BMI), Diastolic
Pressure (BP_LOW), Systolic Pressure (BP_HIGH), Total
Cholesterol (TC), Blood Urea (BU), Lactate Dehydrogenase
(LDHL), Aspartate Transaminase (AST), Gamma-
Glutamyltransferase (GGT), Lipase (LPS), Albumin
(ALB), Serum Creatinine (SCR), Fibrinogen (FBG), Direct
Bilirubin (DBILI), and Albumin Creatinine Ratio
(ALB_CR). Furthermore, the Spearman correlation
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Fig. 1 The balance test between
the training and testing groups.
A Volcano plot for single-
variable difference analyses
(The horizontal axis represents
the FC or OR values of each
variable between the training set
and the test set, while the
vertical axis represents the P-
values.). B The scatter plot of
UMAP and PERMANOVA
analyses between the training set
and the test set

Fig. 2 Screening of key DN features. A volcano plot for difference
analysis. B RFE. Each variable’s LASSO regression coefficient (C)
and the binomial deviation results of Lasso regression through 10-fold

cross-validation (D). E Venn diagram of the selection results from the
four methods. F Heatmap of the correlations among key features
(*P < 0.05)
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coefficients between these 15 variables are relatively small,
indicating the absence of significant collinearity (Fig. 2F).

Construction and evaluation of the DN
prediction model

Among the 10 models, the RF and XGboost models dis-
played excellent predictive performance in all 5 evaluation
metrics in the training set (all equal to 1, Fig. 3A, Table S3).
In the test set, the RF model exhibited superior predictive
capabilities compared to other models (AUC-ROC= 0.912,

AUC-PR= 0.930, Accuracy= 0.852, MCC= 0.707,
Kappa= 0.704, Fig. 3B, Table S3). Therefore, the RF
model was selected as the final prediction model. Then, we
performed hyperparameter tuning for the RF model. When
mtry= 2, nodesize= 2, and ntrees= 425, the model
achieved the best ROC-AUC value of 0.915. Compared to
before tuning, the model’s performance improved by
0.329% (Table S4). External validation results from the
NHANES and TWBB cohorts indicated that the RF model
demonstrated good generalization ability, with ROC-AUC
of 0.828 and 0.863, reflecting strong predictive

Fig. 3 Construction and evaluation of the DN prediction model
(***P < 0.001). Bar plots of each evaluation metric for the 10 models
in the training set (A) and the test set (B) (* is the best model).
C Validation of RF models in the NHANES and TWBB cohorts.

Boxplots of the RF predicted probability in DN and nDN groups in the
NPHDC (D), NHANES (F), and TWBB (H) cohorts, and scatter plots
of the UMAP distributions based on the RF probability and the key
features in the NPHDC (E), NHANES (G) and TWBB (I) cohorts
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performance. However, its performance in terms of AUC-
PR, MCC, and Kappa is not satisfactory, which may be due
to the imbalance in the validation data. (Fig. 3C). Further-
more, boxplots and UMAP results illustrated that the risk
prediction outcomes based on this model could effectively
differentiate between DN and nDN patients in the NPHDC,
NHANES, and TWBB cohorts (P < 0.05, Fig. 3D–I).

The RF model outperforms other diagnostic
indicators

Meta-analysis showed that the RF model predicted risk as
an adverse effect factor in the NPHDC cohort, NHANES
cohort, and TWBB cohort (OR > 1, P < 0.001, Fig. 4A). In
addition, we further compared the predictive ability of the
RF model with other clinically used metrics for diagnosing
DN by LR, ROC curve, and Decision Curve Analysis
(DCA). In the 3 cohorts, the univariate and multivariate LR
results showed that the OR of RF in predicting risk was
greater than 1 and significantly higher than other indicators
(Fig. 4B). The area under the curve of ROC was 0.989 in
the NPHDC cohort, 0.828 in the NHANES data, and 0.863
in the TWBB cohort, which were higher than other clinical

indices such as ALB_CR, SCR and BU (Fig. 4C). DCA
results revealed that patients benefited significantly more
from clinical treatment based on the RF risk prediction
results compared to other indicators (Fig. 4D). In conclu-
sion, the predictive power of RF is significantly better than
that of the currently used diagnostic indicators of DN.

Explanation analysis of the RF model

The importance of ALB_CR in the RF model is sig-
nificantly higher than other indicators, followed by SCR
and BU (Fig. 5A). Additionally, when the values of
ALB_CR, SCR, and BU increase, the RF prediction prob-
ability also increases (R > 0). However, the value of ALB is
significantly negatively correlated with the RF prediction
probability (R < 0, Fig. 5B, C).

Furthermore, we found that the samples incorrectly
predicted by the RF model in the 3 cohorts were mainly
concentrated in the DN group (Fig. 5D–F), and their pre-
diction probabilities were mainly distributed between 0.2
and 0.8 (Fig. 5G). So, when the model’s prediction results
fall within the intermediate range, clinical judgment is
needed to assess the reliability of these results.

Fig. 4 Comparison of the predictive value of the RF model with other indicators (***P < 0.001 < **P < 0.01 < *P < 0.05). A Meta-analysis;
B logistic regression; C ROC curve; D DCA
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Discussion

Due to the complex and insidious nature of DN pathogenesis,
early diagnosis and treatment are challenging, and single
clinical characteristic indicators typically struggle to make
accurate diagnoses. Currently, clinical indicators such as
proteinuria, creatinine, and glomerular filtration rate have

some suggestive value in assessing the onset and prognosis of
DN. However, due to the relatively complex mechanisms
underlying DN pathogenesis and the relative independence of
various risk indicators, it is difficult to make precise deter-
minations about the occurrence and screening of DN [31].

With the advancement of computer science and the
availability of large medical datasets, machine learning has

Fig. 5 Explanation analysis of the RF model. A The importance of
various indicators in the RF model. RF model interpretability based on
SHAP values (B), and PDP (C). Confusion matrix of the NPHDC (D),

NHANES (E), and TWBB (F) cohorts. G Percentage probability
distribution of samples with RF prediction errors in the 3 cohorts
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become closely integrated with the field of medicine. It has
found widespread applications in various areas of research,
including epidemiology, oncology, and immunological dis-
eases [32, 33]. At present, the trend in clinical early diagnosis
is the use of multiple indicators in combination. Constructing
a DN risk prediction model by combining various clinical
indicators is beneficial for disease prevention, diagnosis, and
treatment. Therefore, in this study, we analyzed clinical data
of diabetic patients using various machine learning algorithms
to identify clinical indicators related to the occurrence of DN.
Then, We built a DN prediction model based on these indi-
cators and validated the model internally and externally. The
goal is to provide assistance in the early diagnosis and pre-
vention of DN for patients.

Our study identified 15 clinical indicators such as AGE,
BMI, ALB_CR, SCR, BU, and ALB as factors associated
with the occurrence of DN. Some of these indicators are
recognized as common risk factors for type 2 diabetes, such as
age and BMI, and these factors were also associated with the
development of DN in our study [34]. Currently, ALB_CR
and glomerular filtration rate are commonly used clinical
indicators for early DN screening and have been included in
expert consensus [35]. Another study found that increased
levels of SCR led to a 30-fold increase in the risk of DN and a
6.5-fold increase in the risk of death, and SCR has now been
used clinically as a diagnostic indicator for the progression of
DN to end-stage renal disease [36]. Moreover, BU, ALB, and
LDHL have all been shown to be strongly associated with the
development of DN [37–39]. These findings further confirm
the reliability and scientific validity of our study.

We have successfully constructed a risk prediction model
for DN based on these indicators. In our study, we found that
the traditional Random Forest model achieved the best pre-
dictive performance, surpassing not only other machine
learning algorithms but also two deep learning models. As
we know, deep learning models have more complex algo-
rithms and advanced learning capabilities compared to tra-
ditional machine learning models. However, they do depend
on extensive datasets to complete the learning process [40].
One of the possible reasons for the poor performance of deep
learning models in this study could be the relatively small
training sample size, which only consists of 2412 cases.

In the RF model, the levels of ALB_CR, SCR, and BU
are positively correlated with the model’s predicted prob-
ability, whereas the level of ALB is negatively correlated.
An increase in the levels of ALB_CR, SCR, and BU is
observed during the development of DN, but the ALB
levels may not always increase. Based on the ALB levels in
urine, DN can be divided into proteinuria phenotype and
non-proteinuria phenotype. In patients with these two dif-
ferent phenotypes, there are morphological and functional
differences [41]. This could explain why the ALB levels are
negatively correlated with the RF prediction values.

In conclusion, our study successfully developed a risk pre-
diction model for diagnosing DN, which demonstrated good
performance in both the internal training and test sets, as well
as in external validation cohorts. This finding provides a
powerful tool for early diagnosis and intervention of DN, with
the potential to reduce disease progression and its adverse
impact on patients. However, the study has some limitations.
Firstly, although our model showed good performance, there is
still a certain error rate, especially when predicting probabilities
close to intermediate values. Secondly, this is a case-control
study, and it may have some selection bias, which may not
accurately reflect the real population with DN. Additionally, the
study only analyzed data from Chinese and American popu-
lations and had limited sources for validation. In the future, we
plan to incorporate more biological markers and genomic
information to further improve the accuracy of risk prediction.

Conclusion

We successfully identified 15 clinical features that are clo-
sely related to the occurrence of DN and constructed an RF
model based on these features, which has good predictive
ability in the training set as well as in 2 external validation
cohorts. The model is expected to be useful for early
screening of clinical DN patients.
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